Your browser doesn't support javascript.
loading
Experimental and Analytical Research on Flexural Behavior of Concrete-Filled High-Strength Steel Tubular Members.
Zhang, Zai-Yu; Sun, Qing; Wang, Jia-Qi; Zhao, Chao; Zhao, Bing-Zhen; Wang, Jian-Tao.
Afiliação
  • Zhang ZY; Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Sun Q; Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Wang JQ; Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Zhao C; Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Zhao BZ; Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi'an 710116, China.
  • Wang JT; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi'an Jiaotong University, Xi'an 710116, China.
Materials (Basel) ; 15(11)2022 May 26.
Article em En | MEDLINE | ID: mdl-35683088
ABSTRACT
Using high-strength steel (yield strength fy ≥ 460 MPa) in concrete-filled steel tubes is expected to provide a superior bearing capacity by achieving light weight and efficient construction, but the existing design limitation on diameter-to-thickness (D/t) ratios for concrete-filled high-strength steel tubular (CFHST) members inevitably obstructs its wide application. In this study, aiming at the application of circular CFHST members using Q690 steel (fy ≥ 690 MPa), a total of 15 CFHST beams were examined using a three-point loading test to investigate the failure mode, bearing capacity and plasticity evolution. Subsequently, finite element models (FEMs) were established to analyze the full-range curves, composite effect, failure mechanism and influences of key parameters including material strengths, D/t ratios, and shear-span ratios. A simplified calculation method for bearing capacity was finally proposed and verified. The results indicate that the full-range performance of tested CFHST members with out-of-code D/t ratios have ductile behavior, though they fail through the mode of steel fracture and concrete cracks in the tension zone as well as through local buckling in the compression zone; out-of-code CFHST members (e.g., D/t = 120) can perform reasonable composite behavior because of contact pressure larger than 2.5 MPa, where a thin-walled steel tube experiences an arch failure mechanism similar to core concrete at a trussed angle of 45°; the simplified bearing capacity model achieves a mean value of 0.97, and can be accepted as a primary tool to perform structural design and performance evaluation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article