Your browser doesn't support javascript.
loading
Schoolyard Biodiversity Determines Short-Term Recovery of Disturbed Skin Microbiota in Children.
Mills, Jacob G; Selway, Caitlin A; Thomas, Torsten; Weyrich, Laura S; Lowe, Andrew J.
Afiliação
  • Mills JG; School of Biological Sciences, The University of Adelaide, Kaurna Country, Adelaide, South Australia, Australia. millsj515@gmail.com.
  • Selway CA; School of Biological Sciences, The University of Adelaide, Kaurna Country, Adelaide, South Australia, Australia.
  • Thomas T; Centre for Marine Science and Innovation, School of Biological, Environmental and Earth Sciences, University of New South Wales, Bidjigal Country, Sydney, Australia.
  • Weyrich LS; School of Biological Sciences, The University of Adelaide, Kaurna Country, Adelaide, South Australia, Australia.
  • Lowe AJ; Department of Anthropology, The Pennsylvania State University, University Park, State College, PA, USA.
Microb Ecol ; 86(1): 658-669, 2023 Jul.
Article em En | MEDLINE | ID: mdl-35689685
Creating biodiverse urban habitat has been proposed, with growing empirical support, as an intervention for increasing human microbial diversity and reducing associated diseases. However, ecological understanding of urban biodiversity interventions on human skin microbiota remains limited. Here, we experimentally test the hypotheses that disturbed skin microbiota recover better in outdoor schoolyard environments and that greater biodiversity provides a greater response. Repeating the experiment three times, we disturbed skin microbiota of fifty-seven healthy 10-to-11-year-old students with a skin swab (i.e., cleaning), then exposed them to one school environment-either a 'classroom' (n = 20), 'sports field' (n = 14), or biodiverse 'forest' (n = 23)-for 45 min. Another skin swab followed the exposure to compare 'before' and 'after' microbial communities. After 45 min, the disturbance immediately followed by outdoor exposure, especially the 'forest', had an enriching and diversifying effect on skin microbiota, while 'classroom' exposure homogenised inter-personal variability. Each effect compounded over consecutive days indicating longer-term exposure outcomes. The experimental disturbance also reduced the core skin microbiota, and only outdoor environments were able to replenish lost species richness to core membership (n species > 50% prevalent). Overall, we find that environmental setting, especially including biodiversity, is important in human microbiota recovery periods and that the outdoors provide resilience to skin communities. This work also has implications for the inclusion of short periods of outside or forest exposure in school scheduling. Future investigations of the health impacts of permanent urban biodiversity interventions are needed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Limite: Child / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Limite: Child / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article