Your browser doesn't support javascript.
loading
Deep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography.
Walsh, Simon L F; Mackintosh, John A; Calandriello, Lucio; Silva, Mario; Sverzellati, Nicola; Larici, Anna Rita; Humphries, Stephen M; Lynch, David A; Jo, Helen E; Glaspole, Ian; Grainge, Christopher; Goh, Nicole; Hopkins, Peter M A; Moodley, Yuben; Reynolds, Paul N; Zappala, Christopher; Keir, Gregory; Cooper, Wendy A; Mahar, Annabelle M; Ellis, Samantha; Wells, Athol U; Corte, Tamera J.
Afiliação
  • Walsh SLF; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
  • Mackintosh JA; Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia.
  • Calandriello L; Dipartimento di Diagnostica per immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
  • Silva M; Scienze Radiologiche, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
  • Sverzellati N; Scienze Radiologiche, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
  • Larici AR; Dipartimento di Diagnostica per immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
  • Humphries SM; Department of Radiology, National Jewish Health, Denver, Colorado.
  • Lynch DA; Department of Radiology, National Jewish Health, Denver, Colorado.
  • Jo HE; Respiratory Medicine, Royal Prince Alfred Hospital, New South Wales, Australia.
  • Glaspole I; Department of Allergy and Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia.
  • Grainge C; Department of Respiratory Medicine, New Lambton Heights, John Hunter Hospital, New South Wales, Australia.
  • Goh N; Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Victoria, Australia.
  • Hopkins PMA; Institute for Breathing and Sleep, Melbourne, Victoria, Australia.
  • Moodley Y; University of Melbourne, Melbourne, Victoria, Australia.
  • Reynolds PN; Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia.
  • Zappala C; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
  • Keir G; School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
  • Cooper WA; Royal Adelaide Hospital Chest Clinic, Adelaide, South Australia, Australia.
  • Mahar AM; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
  • Ellis S; Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
  • Wells AU; Tissue Pathology and Diagnostic Oncology, New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
  • Corte TJ; School of Medicine, University of Sydney, Sydney, New South Wales, Australia.
Am J Respir Crit Care Med ; 206(7): 883-891, 2022 10 01.
Article em En | MEDLINE | ID: mdl-35696341
Rationale: Reliable outcome prediction in patients with fibrotic lung disease using baseline high-resolution computed tomography (HRCT) data remains challenging. Objectives: To evaluate the prognostic accuracy of a deep learning algorithm (SOFIA [Systematic Objective Fibrotic Imaging Analysis Algorithm]), trained and validated in the identification of usual interstitial pneumonia (UIP)-like features on HRCT (UIP probability), in a large cohort of well-characterized patients with progressive fibrotic lung disease drawn from a national registry. Methods: SOFIA and radiologist UIP probabilities were converted to Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED)-based UIP probability categories (UIP not included in the differential, 0-4%; low probability of UIP, 5-29%; intermediate probability of UIP, 30-69%; high probability of UIP, 70-94%; and pathognomonic for UIP, 95-100%), and their prognostic utility was assessed using Cox proportional hazards modeling. Measurements and Main Results: In multivariable analysis adjusting for age, sex, guideline-based radiologic diagnosis, anddisease severity (using total interstitial lung disease [ILD] extent on HRCT, percent predicted FVC, DlCO, or the composite physiologic index), only SOFIA UIP probability PIOPED categories predicted survival. SOFIA-PIOPED UIP probability categories remained prognostically significant in patients considered indeterminate (n = 83) by expert radiologist consensus (hazard ratio, 1.73; P < 0.0001; 95% confidence interval, 1.40-2.14). In patients undergoing surgical lung biopsy (n = 86), after adjusting for guideline-based histologic pattern and total ILD extent on HRCT, only SOFIA-PIOPED probabilities were predictive of mortality (hazard ratio, 1.75; P < 0.0001; 95% confidence interval, 1.37-2.25). Conclusions: Deep learning-based UIP probability on HRCT provides enhanced outcome prediction in patients with progressive fibrotic lung disease when compared with expert radiologist evaluation or guideline-based histologic pattern. In principle, this tool may be useful in multidisciplinary characterization of fibrotic lung disease. The utility of this technology as a decision support system when ILD expertise is unavailable requires further investigation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Pulmonares Intersticiais / Fibrose Pulmonar Idiopática / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Pulmonares Intersticiais / Fibrose Pulmonar Idiopática / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article