Your browser doesn't support javascript.
loading
Origin of the Unusual Ground-State Spin S = 9 in a Cr10 Single-Molecule Magnet.
Rubín, Javier; Arauzo, Ana; Bartolomé, Elena; Sedona, Francesco; Rancan, Marzio; Armelao, Lidia; Luzón, Javier; Guidi, Tatiana; Garlatti, Elena; Wilhelm, Fabrice; Rogalev, Andrei; Amann, Andreas; Spagna, Stefano; Bartolomé, Juan; Bartolomé, Fernando.
Afiliação
  • Rubín J; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Arauzo A; Departamento de Ciencia y Tecnología de Materiales y Fluidos, Universidad de Zaragoza, 50018 Zaragoza, Spain.
  • Bartolomé E; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Sedona F; Servicio de Medidas Físicas, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
  • Rancan M; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Armelao L; Escola Universitària Salesiana de Sarrià (EUSS), Passeig Sant Joan Bosco 74, 08017 Barcelona, Spain.
  • Luzón J; Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
  • Guidi T; Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemistry, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
  • Garlatti E; Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
  • Wilhelm F; Department of Chemical Sciences and Materials Technologies (DSCTM), National Research Council (CNR), Piazzale A. Moro 7, 00185 Roma, Italy.
  • Rogalev A; Academia General Militar, Centro Universitario de la Defensa, 50090 Zaragoza, Spain.
  • Amann A; Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy.
  • Spagna S; ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, Oxfordshire, U.K.
  • Bartolomé J; Dipartimento di Science Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
  • Bartolomé F; ESRF - The European Synchrotron Radiation Facility, 71 Avenue des Martyrs CS40220, F-38043 Grenoble Cedex 09, France.
J Am Chem Soc ; 144(27): 12520-12535, 2022 Jul 13.
Article em En | MEDLINE | ID: mdl-35759747
The molecular wheel [Cr10(OMe)20(O2CCMe3)10], abbreviated {Cr10}, with an unusual intermediate total spin S = 9 and non-negligible cluster anisotropy, D/kB = -0.045(2) K, is a rare case among wheels based on an even number of 3d-metals, which usually present an antiferromagnetic (AF) ground state (S = 0). Herein, we unveil the origin of such a behavior. Angular magnetometry measurements performed on a single crystal confirmed the axial anisotropic behavior of {Cr10}. For powder samples, the temperature dependence of the susceptibility plotted as χT(T) showed an overall ferromagnetic (FM) behavior down to 1.8 K, whereas the magnetization curve M(H) did not saturate at the expected 30 µB/fu for 10 FM coupled 3/2 spin Cr3+ ions, but to a much lower value, corresponding to S = 9. In addition, the X-ray magnetic circular dichroism (XMCD) measured at high magnetic field (170 kOe) and 7.5 K showed the polarization of the cluster moment up to 23 µB/fu. The magnetic results can be rationalized within a model, including the cluster anisotropy, in which the {Cr10} wheel is formed by two semiwheels, each with four Cr3+ spins FM coupled (JFM/kB = 2.0 K), separated by two Cr3+ ions AF coupled asymmetrically (J23/kB = J78/kB = -2.0 K; J34/kB = J89/kB = -0.25 K). Inelastic neutron scattering and heat capacity allowed us to confirm this model leading to the S = 9 ground state and first excited S = 8. Single-molecule magnet behavior with an activation energy of U/kB = 4.0(5) K in the absence of applied field was observed through ac susceptibility measurements down to 0.1 K. The intriguing magnetic behavior of {Cr10} arises from the detailed asymmetry in the molecule interactions produced by small-angle distortions in the angles of the Cr-O-Cr alkoxy bridges coupling the Cr3+ ions, as demonstrated by ab initio and density functional theory calculations, while the cluster anisotropy can be correlated to the single-ion anisotropies calculated for each Cr3+ ion in the wheel.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article