Your browser doesn't support javascript.
loading
Tracking the legacy of early industrial activity in sediments of Lake Zurich, Switzerland: using a novel multi-proxy approach to find the source of extensive metal contamination.
Roethlin, Remo Luis; Gilli, Adrian; Wehrli, Bernhard; Gilli, Robin Sue; Wiederhold, Jan Georg; Dubois, Nathalie.
Afiliação
  • Roethlin RL; Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, 8600, Zurich, Dübendorf, Switzerland. remo.roethlin@eawag.ch.
  • Gilli A; Department of Earth Sciences, Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Zurich, Switzerland. remo.roethlin@eawag.ch.
  • Wehrli B; Department of Earth Sciences, Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Zurich, Switzerland.
  • Gilli RS; Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, 8600, Zurich, Dübendorf, Switzerland.
  • Wiederhold JG; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Aquatic Chemistry Group, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Zurich, Switzerland.
  • Dubois N; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Zurich, Switzerland.
Environ Sci Pollut Res Int ; 29(57): 85789-85801, 2022 Dec.
Article em En | MEDLINE | ID: mdl-35768710
Historical industrial activities at the Horn Richterwil, on the shore of Lake Zurich (Switzerland), caused widespread metal contamination on land and in the adjacent lake sediments. This study provides an estimation of the age and source of the contamination by using XRF core scanning, ICP-OES, and Hg-AFS for quantitative measurements of trace metals and MC-ICP-MS for the stable isotope analysis of mercury. Radiometric dating ([Formula: see text]Cs, [Formula: see text]Pb, and Pu dating) of two proximal cores and varve chronology in a distal core suggest two different contaminations, one stemming from around 1960 (Zn, Cd) and an earlier one from 1880 (Cr, Cu, Hg, Pb, Sn). The XRF data suggest two different contamination pathways: one by landfill of contaminated soil and another one by industrial wastewater effluents. Maximum concentrations found within all samples are in the range of per mil (dry weight) for Cr, Cu, Hg, Pb, Sn, and Zn and lie within the top 10 cm of the sediment cores. The analysis of the mercury isotopic composition ([Formula: see text]Hg and [Formula: see text]Hg) shows a significantly different signature for one of the cores, indicating a second mercury source. We could not identify the exact source or process leading to the isotopic fractionation of mercury, but the isotopic data confirm two different sources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Mercúrio Tipo de estudo: Prognostic_studies País como assunto: Asia / Europa Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados / Mercúrio Tipo de estudo: Prognostic_studies País como assunto: Asia / Europa Idioma: En Ano de publicação: 2022 Tipo de documento: Article