Your browser doesn't support javascript.
loading
Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D.
Koskinen Holm, Cecilia; Qu, Chengjuan.
Afiliação
  • Koskinen Holm C; Department of Odontology, Umeå University, 90185 Umeå, Sweden.
  • Qu C; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article em En | MEDLINE | ID: mdl-35806407
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air-liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Iridoides / Gengiva Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Iridoides / Gengiva Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article