Your browser doesn't support javascript.
loading
Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks.
Khodadadian, Amirreza; Parvizi, Maryam; Teshnehlab, Mohammad; Heitzinger, Clemens.
Afiliação
  • Khodadadian A; Institute of Applied Mathematics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
  • Parvizi M; Institute of Applied Mathematics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
  • Teshnehlab M; Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), Leibniz University Hannover, 30167 Hannover, Germany.
  • Heitzinger C; Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran.
Sensors (Basel) ; 22(13)2022 Jun 24.
Article em En | MEDLINE | ID: mdl-35808281
Silicon nanowire field-effect transistors are promising devices used to detect minute amounts of different biological species. We introduce the theoretical and computational aspects of forward and backward modeling of biosensitive sensors. Firstly, we introduce a forward system of partial differential equations to model the electrical behavior, and secondly, a backward Bayesian Markov-chain Monte-Carlo method is used to identify the unknown parameters such as the concentration of target molecules. Furthermore, we introduce a machine learning algorithm according to multilayer feed-forward neural networks. The trained model makes it possible to predict the sensor behavior based on the given parameters.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Nanofios Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Nanofios Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article