Your browser doesn't support javascript.
loading
Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory Pathway.
Zhang, Haofuzi; Yang, Yuefan; Yang, Erwan; Tian, Zhicheng; Huang, Yutao; Zhang, Zhuoyuan; Bao, Mingdong; Liao, Dan; Ge, Junmiao; Wang, Chao; Li, Xin; Luo, Peng.
Afiliação
  • Zhang H; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Yang Y; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Yang E; Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
  • Tian Z; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Huang Y; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Zhang Z; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Bao M; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Liao D; School of Life Science, Northwest University, Xi'an, China.
  • Ge J; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Wang C; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Li X; Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 12769 Changle Xi Road, Xi'an, 710032, China.
  • Luo P; School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China.
Cell Mol Neurobiol ; 43(3): 1301-1317, 2023 Apr.
Article em En | MEDLINE | ID: mdl-35831547
ABSTRACT
Neuroinflammation is one of the most important pathological processes following brain ischemia. Pulsed electromagnetic fields (PEMFs) protect against brain ischemia, but their role in regulating neuroinflammation remains unclear. In the present study, we investigated the biological effects of PEMF exposure on brain ischemia-induced neuroinflammation through the astrocytic cholinergic anti-inflammatory pathway. PEMF exposure reduced the activation of astrocytes and neuroinflammation following brain ischemia by directly modulating astrocytic injury and inflammatory cytokine release. Inhibition of nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) by a specific antagonist reversed the regulatory effects of PEMF on astrocytes. Furthermore, negative regulation of signal transducer and activator of transcription 3 (STAT3) by α7nAChR was found to be an important downstream mechanism through which PEMF regulates astrocyte-related neuroinflammation. PEMF suppressed STAT3 phosphorylation and nuclear translocation by activating α7nAChR. These results demonstrate that PEMF exerts anti-inflammatory effects in the context of brain ischemia by modulating astrocytic α7nAChR/STAT3 signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Isquemia Encefálica / Receptor Nicotínico de Acetilcolina alfa7 Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Isquemia Encefálica / Receptor Nicotínico de Acetilcolina alfa7 Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article