Your browser doesn't support javascript.
loading
Discovery, Optimization, and Evaluation of Potent and Selective PI3Kδ-γ Dual Inhibitors for the Treatment of B-cell Malignancies.
Liu, Kongjun; Zheng, Wei; Chen, Yong; Tang, Minghai; Li, Dan; Deng, Dexin; Yang, Tao; Zhang, Chufeng; Liu, Jiang; Yuan, Xue; Shi, Mingsong; Li, Xiandeng; Guo, Yong; Zhou, Yanting; Zhao, Min; Chen, Lijuan.
Afiliação
  • Liu K; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Zheng W; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Chen Y; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Tang M; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Li D; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Deng D; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Yang T; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Zhang C; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Liu J; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Yuan X; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Shi M; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Li X; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Guo Y; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Zhou Y; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Zhao M; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
  • Chen L; Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
J Med Chem ; 65(14): 9893-9917, 2022 07 28.
Article em En | MEDLINE | ID: mdl-35831917
Nowadays, PI3Kδ-γ dual inhibitors have been approved for the treatment of B-cell malignancies. Dual inhibition of PI3Kδ and PI3Kγ represents a unique therapeutic opportunity and may confer greater benefits than either isoform inhibition alone in the management of hematological malignancies. However, currently available dual inhibitors of PI3Kδ-γ compromise in at least one of several essential properties in terms of potency, selectivity, and pharmacokinetic (PK) profiles. Hence, the main challenge of our optimization campaign was to identify an oral available PI3Kδ-γ dual inhibitor with an optimum balance of potency, selectivity, and PK profiles. The medicinal chemistry efforts culminated in the discovery of compound 58, which exhibited strong potency and high selectivity along with excellent in vivo profiles as demonstrated through PK studies in rats and through pharmacodynamic studies in an SUDHL-6 xenograft model. All the results suggest that compound 58 may be a promising candidate for the treatment of B-cell malignancies.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores de Proteínas Quinases / Neoplasias Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores de Proteínas Quinases / Neoplasias Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article