Your browser doesn't support javascript.
loading
A fluorescent probe based on FRET effect between carbon nanodots and gold nanoparticles for sensitive detection of thiourea.
Hu, Anqi; Chen, Guoqing; Yang, Taiqun; Ma, Chaoqun; Li, Lei; Gao, Hui; Gu, Jiao; Zhu, Chun; Wu, Yamin; Li, Xiaolin; Wei, Yitao; Huang, Anlan; Qiu, Xiaoqian; Xu, Jinzeng; Shen, Jialu; Zhong, Lvyuan.
Afiliação
  • Hu A; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Chen G; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China. Electronic address: jncgq@jiangnan.edu.cn.
  • Yang T; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Ma C; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Li L; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Gao H; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Gu J; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Zhu C; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Wu Y; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Li X; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Wei Y; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Huang A; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Qiu X; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Xu J; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Shen J; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
  • Zhong L; School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121582, 2022 Nov 15.
Article em En | MEDLINE | ID: mdl-35835057
ABSTRACT
Illegal abuse results in the presence of thiourea (TU) in soil, wastewater, and even fruits, which is harmful for the environment and human health. It has urgent practical significance to design an efficient and reliable probe for TU detection. Herein, a sensitive fluorescent probe with off-on response for harmful TU was reported. The probe was designed with fluorescent carbon nanodots (CNDs) and gold nanoparticles (AuNPs) based on fluorescence resonance energy transfer (FRET) effect. Firstly, the CNDs were pre-combined with AuNPs and the fluorescence of CNDs was quenched due to the FRET effect. Upon addition of TU, the fluorescence of CNDs recovered due to the unbinding of CNDs and AuNPs, since the coordination interaction between TU and AuNPs is stronger than the electrostatic interaction among CNDs and AuNPs. Under the optimum parameters, a linear relationship was found between the relative fluorescence intensity of the probe and the concentration of TU in the range of 5.00 × 10-8-1.00 × 10-6 M (R2 = 0.9958), with the limit of detection (LOD) calculated to be 3.62 × 10-8 M. This proposed method is easy to operate and has excellent selectivity and sensitivity for TU, which can be effectively applied in environmental water and compound fruit-vegetable juice.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article