Your browser doesn't support javascript.
loading
Detection of OXA-181-producing Pseudomonas aeruginosa in Germany.
Schauer, Jennifer; Gatermann, Sören G; Eisfeld, Jessica; Hans, Jörg; Pfennigwerth, Niels.
Afiliação
  • Schauer J; German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
  • Gatermann SG; German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
  • Eisfeld J; German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
  • Hans J; German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
  • Pfennigwerth N; German National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany,. Electronic address: niels.pfennigwerth@rub.de.
Int J Med Microbiol ; 312(5): 151557, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35842996
ABSTRACT

OBJECTIVES:

To report the detection of the class D carbapenemase OXA-181 in an MDR clinical Pseudomonas aeruginosa isolate in Germany.

METHODS:

Carbapenemase detection was performed by using several phenotypic tests such as the modified Hodge test, a combined disc test with boronic acid, EDTA or cloxacillin, a lysate-based inhibition assays and by PCR for common and rare carbapenemase genes. Antibiotic susceptibilities were determined by broth microdilution. The genetic environment of blaOXA-181 in the clinical P. aeruginosa isolate was characterised by Illumina and MinION sequencing.

RESULTS:

An multidrug-resistant P. aeruginosa was isolated from a tracheal swab in 2019 and was sent to the German National Reference Centre for multidrug-resistant Gram-negative bacteria for carbapenemase detection. Several phenotypic tests indicated the presence of a carbapenemase which was not inhibited by EDTA nor by boronic acid. PCRs for common and rare carbapenemase genes revealed the presence of a blaOXA-181 gene. WGS data confirmed that the gene was located on the chromosome as part of a Tn2013 transposon. The genetic organisation of blaOXA-181 has already been described in a P. aeruginosa isolate from England, but both isolates differed significantly in their sequence types (ST111/ST235). Analysis of the genetic environment of the blaOXA-181 gene also revealed high homology to a plasmid from a Klebsiella pneumoniae isolate.

CONCLUSIONS:

To our knowledge, this is the first report of blaOXA-181 in a clinical P. aeruginosa isolate in Germany which emphasises the ongoing spread of yet unusual carbapenemases among different Gram-negative species and therefore complicating their detection in routine laboratories.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Antibacterianos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Antibacterianos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article