Your browser doesn't support javascript.
loading
An Unprecedented Fireproof, Anion-Immobilized Composite Electrolyte Obtained via Solidifying Carbonate Electrolyte for Safe and High-Power Solid-State Lithium-Ion Batteries.
Yang, Le; Huang, Yongxin; Tufail, Muhammad Khurram; Wang, Xuefeng; Yang, Wen.
Afiliação
  • Yang L; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Huang Y; School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Tufail MK; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Wang X; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Yang W; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Small ; 18(32): e2202060, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35843882
ABSTRACT
The update of electrolytes from a liquid state to a solid state is considered effective in improving the safety and energy density of lithium-ion batteries (LIBs). Although numerous efforts have been made, solid-state electrolytes' (SSEs) insufficient charge transfer capability remains a significant obstruction to practical applications. Herein, a fireproof and anion-immobilized composite electrolyte is designed by solidifying carbonate electrolyte, exhibiting superior Li-ion conductivity (11.5 mS cm-1 at 30 °C) and Li-ion transference number (0.90), which endows LIBs excellent rate capability and cycling stability. Elaborate characteristics and theoretical calculations demonstrate the presence of robust anion-molecule coordination (composed of lithium bond and Coulomb force) enables a more efficient ion transport, where the mobility of Li+ ion is enhanced meanwhile the anions are immobilized. This work highlights how the strong interactions between electrolyte components can be used to simultaneously regulate the migration of Li+ ion and anion, and realize a one-step conversion of inflammable liquid-state electrolyte to nonflammable solid-state electrolyte.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article