Robust Superhydrophobic Surfaces via the Sand-In Method.
ACS Appl Mater Interfaces
; 14(30): 35053-35063, 2022 Aug 03.
Article
em En
| MEDLINE
| ID: mdl-35862236
Superhydrophobic surfaces have gained sustained attention because of their extensive applications in the fields of self-cleaning, anti-icing, and drag reduction systems. Water droplets must have large apparent contact angle (CA) (>150°) and small CA hysteresis (<10°) on these surfaces. However, previous research usually involves complex fabrication strategies to modify the surface wettability. It is also challenging to maintain the temporal and mechanical stability of the delicate surface textures. Here, we develop a one-step solvent-free sand-in method to fabricate robust superhydrophobic surfaces directly atop various substrates with an apparent CA up to â¼163.8° and hysteresis less than 5°. The water repellency can withstand 100 Scotch tape peeling tests and remain stable after being stored under ambient humid conditions in Houston, Texas, for 18 months or being heated at 130 °C in air for 24 h. The superhydrophobic surfaces have excellent anti-icing ability, including a â¼2.6× longer water freezing time and â¼40% smaller ice adhesion strength with the temperature as low as -35 °C. Since the surface layers are fabricated by sanding the substrates with the powder additives, the surface damage can be repaired by a direct re-sanding treatment with the same powder additives. Further sand-in condition screenings broaden surface wettability from hydrophilic to superhydrophobic. The sand-in method induces the surface modification and the formation of the tribofilm. Surface and materials characterizations reveal that both microstructures and nanoscale asperities of the tribofilms contribute to the robust superhydrophobic features of sanded surfaces.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article