Dynamicity of histone H3K27ac and H3K27me3 modifications regulate the cold-responsive gene expression in Oryza sativa L. ssp. indica.
Genomics
; 114(4): 110433, 2022 07.
Article
em En
| MEDLINE
| ID: mdl-35863676
Cultivated in tropical and subtropical regions, Oryza sativa L. ssp. indica is largely affected by cold-stress, especially at the seedling stage. The present model of the stress-responsive regulatory network in plants entails the role of genetic and epigenetic factors in stress-responsive gene expression. Despite extensive transcriptomic studies, the regulation of various epigenetic factors in plants cold-stress response is less explored. The present study addresses the effect of genome-wide changes of H3K27 modifications on gene expression in IR64 rice, during cold-stress. Our results suggest a positive correlation between the changes in H3K27 modifications and stress-responsive gene activation in indica rice. Cold-induced enrichment of H3K27 acetylation promotes nucleosomal rearrangement, thereby facilitating the accessibility of the transcriptional machinery at the stress-responsive loci for transcription activation. Although H3K27ac exhibits uniform distribution throughout the loci of enriched genes; occupancy of H3K27me3 is biased to intergenic regions. Integration of the ChIP-seq data with transcriptome indicated that upregulation of stress-responsive TFs, photosynthesis-TCA-related, water-deficit genes, redox and JA signalling components, was associated with differential changes of H3K27ac and H3K27me3 levels. Furthermore, cold-induced upregulation of histone acetyltransferases and downregulation of DNA methyltransferases was noted through the antagonistic switch of H3K27ac and H3K27me3. Moreover, motif analysis of H3K27ac and H3K27me3 enriched regions are associated with putative stress responsive transcription factors binding sites, GAGA element and histone H3K27demethylase. Collectively our analysis suggests that differential expression of various chromatin and DNA modifiers coupled with increased H3K27ac and depleted H3K27me3 increases DNA accessibility, thereby promoting transcription of the cold-responsive genes in indica rice.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Oryza
/
Histonas
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article