Your browser doesn't support javascript.
loading
Targeted protein degradation using deGradFP in Trypanosoma brucei.
Ishii, Midori; Akiyoshi, Bungo.
Afiliação
  • Ishii M; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
  • Akiyoshi B; Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
Wellcome Open Res ; 7: 175, 2022.
Article em En | MEDLINE | ID: mdl-35865221
ABSTRACT
Targeted protein degradation is an invaluable tool in studying the function of proteins. Such a tool was not available in Trypanosoma brucei, an evolutionarily divergent eukaryote that causes human African trypanosomiasis. Here, we have adapted deGradFP (degrade green fluorescent protein [GFP]), a protein degradation system based on the SCF E3 ubiquitin ligase complex and anti-GFP nanobody, in T. brucei. As a proof of principle, we targeted a kinetoplastid kinetochore protein (KKT3) that constitutively localizes at kinetochores in the nucleus. Induction of deGradFP in a cell line that had both alleles of KKT3 tagged with yellow fluorescent protein (YFP) caused a more severe growth defect than RNAi in procyclic (insect form) cells. deGradFP also worked on a cytoplasmic protein (COPII subunit, SEC31). Given the ease in making GFP fusion cell lines in T. brucei, deGradFP can serve as a powerful tool to rapidly deplete proteins of interest, especially those with low turnover rates.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article