Your browser doesn't support javascript.
loading
Vivaldi Antennas for Contactless Sensing of Implant Deflections and Stiffness for Orthopaedic Applications.
Wolynski, Jakob G; Ilic, Milan M; Notaros, Branislav M; Labus, Kevin M; Puttlitz, Christian M; McGilvray, Kirk C.
Afiliação
  • Wolynski JG; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
  • Ilic MM; School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia.
  • Notaros BM; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
  • Labus KM; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
  • Puttlitz CM; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
  • McGilvray KC; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
IEEE Access ; 10: 1151-1161, 2022.
Article em En | MEDLINE | ID: mdl-35873899
ABSTRACT
The implementation of novel coaxial dipole antennas has been shown to be a satisfactory diagnostic platform for the prediction of orthopaedic bone fracture healing outcomes. These techniques require mechanical deflection of implanted metallic hardware (i.e., rods and plates), which, when loaded, produce measurable changes in the resonant frequency of the adjacent antenna. Despite promising initial results, the coiled coaxial antenna design is limited by large antenna sizes and nonlinearity in the resonant frequency data. The purpose of this study was to develop two Vivaldi antennas (a.k.a., "standard" and "miniaturized") to address these challenges. Antenna behaviors were first computationally modeled prior to prototype fabrication. In subsequent benchtop tests, metallic plate segments were displaced from the prototype antennas via precision linear actuator while measuring resultant change in resonant frequency. Close agreement was observed between computational and benchtop results, where antennas were highly sensitive to small displacements of the metallic hardware, with sensitivity decreasing nonlinearly with increasing distance. Greater sensitivity was observed for the miniaturized design for both stainless steel and titanium implants. Additionally, these data demonstrated that by taking resonant frequency data during implant displacement and then again during antenna displacement from the same sample, via linear actuators, that "antenna calibration procedures" could be used to enable a clinically relevant quantification of fracture stiffness from the raw resonant frequency data. These improvements mitigate diagnostic challenges associated with nonlinear resonant frequency response seen in previous antenna designs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article