Your browser doesn't support javascript.
loading
A Novel Memory and Time-Efficient ALPR System Based on YOLOv5.
Batra, Piyush; Hussain, Imran; Ahad, Mohd Abdul; Casalino, Gabriella; Alam, Mohammad Afshar; Khalique, Aqeel; Hassan, Syed Imtiyaz.
Afiliação
  • Batra P; Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
  • Hussain I; Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
  • Ahad MA; Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
  • Casalino G; Department of Computer Science, University of Bari, 70125 Bari, Italy.
  • Alam MA; Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
  • Khalique A; Department of Computer Science and Engineering, Jamia Hamdard, New Delhi 110062, India.
  • Hassan SI; Department of CS and IT, Maulana Azad National Urdu University, Hyderabad 500032, India.
Sensors (Basel) ; 22(14)2022 Jul 14.
Article em En | MEDLINE | ID: mdl-35890962
With the rapid development of deep learning techniques, new innovative license plate recognition systems have gained considerable attention from researchers all over the world. These systems have numerous applications, such as law enforcement, parking lot management, toll terminals, traffic regulation, etc. At present, most of these systems rely heavily on high-end computing resources. This paper proposes a novel memory and time-efficient automatic license plate recognition (ALPR) system developed using YOLOv5. This approach is ideal for IoT devices that usually have less memory and processing power. Our approach incorporates two stages, i.e., using a custom transfer learned model for license plate detection and an LSTM-based OCR engine for recognition. The dataset that we used for this research was our dataset consisting of images from the Google open images dataset and the Indian License plate dataset. Along with training YOLOv5 models, we also trained YOLOv4 models on the same dataset to illustrate the size and performance-wise comparison. Our proposed ALPR system results in a 14 megabytes model with a mean average precision of 87.2% and 4.8 ms testing time on still images using Nvidia T4 GPU. The complete system with detection and recognition on the other hand takes about 85 milliseconds.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Neurais de Computação Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Neurais de Computação Idioma: En Ano de publicação: 2022 Tipo de documento: Article