Your browser doesn't support javascript.
loading
Decoherence of V[Formula: see text] spin defects in monoisotopic hexagonal boron nitride.
Haykal, A; Tanos, R; Minotto, N; Durand, A; Fabre, F; Li, J; Edgar, J H; Ivády, V; Gali, A; Michel, T; Dréau, A; Gil, B; Cassabois, G; Jacques, V.
Afiliação
  • Haykal A; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Tanos R; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Minotto N; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Durand A; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Fabre F; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Li J; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
  • Edgar JH; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
  • Ivády V; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
  • Gali A; Department of Physics, Linköping University, Linköping, Sweden.
  • Michel T; Wigner Research Centre for Physics, Budapest, Hungary.
  • Dréau A; Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary.
  • Gil B; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Cassabois G; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
  • Jacques V; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, France.
Nat Commun ; 13(1): 4347, 2022 Jul 27.
Article em En | MEDLINE | ID: mdl-35896526
Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms. Here we rely on hBN crystals isotopically enriched with either 10B or 11B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared. By analyzing the hyperfine structure of the spin defect while changing the boron isotope, we first confirm that it corresponds to the negatively charged boron-vacancy center ([Formula: see text]). We then show that its spin coherence properties are slightly improved in 10B-enriched samples. This is supported by numerical simulations employing cluster correlation expansion methods, which reveal the importance of the hyperfine Fermi contact term for calculating the coherence time of point defects in hBN. Using cross-relaxation spectroscopy, we finally identify dark electron spin impurities as an additional source of decoherence. This work provides new insights into the properties of [Formula: see text] spin defects, which are valuable for the future development of hBN-based quantum sensing foils.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article