Your browser doesn't support javascript.
loading
Evolution and folding of repeat proteins.
Galpern, Ezequiel A; Marchi, Jacopo; Mora, Thierry; Walczak, Aleksandra M; Ferreiro, Diego U.
Afiliação
  • Galpern EA; Protein Physiology Lab, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
  • Marchi J; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina.
  • Mora T; Laboratoire de Physique de l'École Normale Supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université de Paris-Cité, 75005 Paris, France.
  • Walczak AM; Laboratoire de Physique de l'École Normale Supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université de Paris-Cité, 75005 Paris, France.
  • Ferreiro DU; Laboratoire de Physique de l'École Normale Supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université de Paris-Cité, 75005 Paris, France.
Proc Natl Acad Sci U S A ; 119(31): e2204131119, 2022 08 02.
Article em En | MEDLINE | ID: mdl-35905321
ABSTRACT
Repeat proteins are made with tandem copies of similar amino acid stretches that fold into elongated architectures. These proteins constitute excellent model systems to investigate how evolution relates to structure, folding, and function. Here, we propose a scheme to map evolutionary information at the sequence level to a coarse-grained model for repeat-protein folding and use it to investigate the folding of thousands of repeat proteins. We model the energetics by a combination of an inverse Potts-model scheme with an explicit mechanistic model of duplications and deletions of repeats to calculate the evolutionary parameters of the system at the single-residue level. These parameters are used to inform an Ising-like model that allows for the generation of folding curves, apparent domain emergence, and occupation of intermediate states that are highly compatible with experimental data in specific case studies. We analyzed the folding of thousands of natural Ankyrin repeat proteins and found that a multiplicity of folding mechanisms are possible. Fully cooperative all-or-none transitions are obtained for arrays with enough sequence-similar elements and strong interactions between them, while noncooperative element-by-element intermittent folding arose if the elements are dissimilar and the interactions between them are energetically weak. Additionally, we characterized nucleation-propagation and multidomain folding mechanisms. We show that the global stability and cooperativity of the repeating arrays can be predicted from simple sequence scores.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Repetição de Anquirina Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Repetição de Anquirina Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article