Your browser doesn't support javascript.
loading
Inhomogeneous magnetization transfer imaging: Concepts and directions for further development.
Alsop, David C; Ercan, Ece; Girard, Olivier M; Mackay, Alex L; Michal, Carl A; Varma, Gopal; Vinogradov, Elena; Duhamel, Guillaume.
Afiliação
  • Alsop DC; Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
  • Ercan E; MR Clinical Science, Philips, Best, The Netherlands.
  • Girard OM; Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
  • Mackay AL; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
  • Michal CA; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
  • Varma G; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
  • Vinogradov E; Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
  • Duhamel G; Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA.
NMR Biomed ; 36(6): e4808, 2023 06.
Article em En | MEDLINE | ID: mdl-35916067
ABSTRACT
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Bainha de Mielina Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Bainha de Mielina Idioma: En Ano de publicação: 2023 Tipo de documento: Article