Your browser doesn't support javascript.
loading
Significant Contribution of Solid Organic Matter for Hydroxyl Radical Production during Oxygenation.
Yu, Chenglong; Lu, Yuxi; Zhang, Yanting; Qian, Ao; Zhang, Peng; Tong, Man; Yuan, Songhu.
Afiliação
  • Yu C; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Lu Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Zhang Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Qian A; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Zhang P; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Tong M; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
  • Yuan S; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China.
Environ Sci Technol ; 56(16): 11878-11887, 2022 08 16.
Article em En | MEDLINE | ID: mdl-35938447
ABSTRACT
Dark formation of hydroxyl radicals (•OH) from soil/sediment oxygenation has been increasingly reported, and solid Fe(II) is considered as the main electron donor for O2 activation. However, the role of solid organic matter (SOM) in •OH production is not clear, although it represents an important electron pool in the subsurface. In this study, •OH production from oxygenation of reduced solid humic acid (HAred) was investigated at pH 7.0. •OH production is linearly correlated with the electrons released from HAred suspension. Solid HAred transferred electrons rapidly to O2 via the surface-reduced moieties (hydroquinone groups), which was fueled by the slow electron transfer from the reduced moieties inside solid HA. Cycling of dissolved HA between oxidized and reduced states could mediate the electron transfer from solid HAred to O2 for •OH production enhancement. Modeling results predicted that reduced SOM played an important or even dominant role in •OH production for the soils and sediments possessing high molar ratios of SOC/Fe(II) (e.g., >39). The significant contribution of SOM was further validated by the modeling results for oxygenation of 88 soils/sediments in the literature. Therefore, reduced SOM should be considered carefully to comprehensively understand •OH production in SOM-rich subsurface environments.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radical Hidroxila / Substâncias Húmicas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radical Hidroxila / Substâncias Húmicas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article