Your browser doesn't support javascript.
loading
Bifunctional Sensors Based on Phosphomolybdates for Detection of Inorganic Hexavalent Chromium and Organic Tetracycline.
Yin, Xiao-Yu; Zhang, Ya-Qi; Ma, Yuan-Yuan; He, Jing-Yan; Song, Hao; Han, Zhan-Gang.
Afiliação
  • Yin XY; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
  • Zhang YQ; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
  • Ma YY; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
  • He JY; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
  • Song H; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
  • Han ZG; Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
Inorg Chem ; 61(33): 13174-13183, 2022 Aug 22.
Article em En | MEDLINE | ID: mdl-35944245
ABSTRACT
Exploring effective sensors for detecting possible hazards in a water system are greatly significant. This work proposed a strategy for stable and effective bifunctional sensors via incorporating hourglass-type phosphomolybdates into metal-organic fragments to construct a high-dimensional framework. Two hourglass-type phosphomolybdate-based electrochemical sensors toward heavy metal ion Cr(VI) and tetracycline (TC) detection were designed with the formula [CoII2(H2O)4NaI2][CoII(Hbpe)][NaI(bpe)1.5]{CoII[PV4MoV6O31H6]2}·9H2O (1) and [CoII(H2O)4NaI3][CoII(Hbpe)][CoII(bpe)]{CoII[PV4MoV6O31H6]2}·9H2O (2) [bpe = 1,2-di(4-pyridyl)ethylene]. Structural analysis showed that hybrids 1 and 2 possess three-dimensional POM-supported network features with favorable stability and exhibit reversible redox properties. Experiments found that this kind of hybrids as efficient sensors have excellent electrochemical performance toward Cr(VI) detection with high sensitivities of 0.111 µA·µM-1 for 1 and 0.141 µA·µM-1 for 2, fast response time of 1 s, and low detection limits of 30 nM for 1 and 27 nM for 2, which far meet the standard of WHO for drinking water. Moreover, hybrids 1-2 also exhibit fast responses to TC detection with sensitivities of 0.0073 and 0.022 µA·mM-1 and detection limits of 0.426 and 0.084 mM. This work offers a novel strategy for the purposeful design of efficient POM-based electrochemical sensors for accurate determination of contaminants in a practical water system.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água / Cromo Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água / Cromo Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article