Your browser doesn't support javascript.
loading
Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations.
Dufault-Thompson, Keith; Nie, Chang; Jian, Huahua; Wang, Fengping; Zhang, Ying.
Afiliação
  • Dufault-Thompson K; Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Islandgrid.20431.34, Kingston, Rhode Island, USA.
  • Nie C; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Universitygrid.16821.3c, Shanghai, People's Republic of China.
  • Jian H; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Universitygrid.16821.3c, Shanghai, People's Republic of China.
  • Wang F; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Universitygrid.16821.3c, Shanghai, People's Republic of China.
  • Zhang Y; School of Oceanography, Shanghai JiaoTong University, Shanghai, People's Republic of China.
mSystems ; 7(4): e0058822, 2022 08 30.
Article em En | MEDLINE | ID: mdl-35950761
ABSTRACT
Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (ΔrG'), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism's ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ciclo do Ácido Cítrico / Redes e Vias Metabólicas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ciclo do Ácido Cítrico / Redes e Vias Metabólicas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article