Your browser doesn't support javascript.
loading
Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells.
Wang, Yahui; Stancliffe, Ethan; Fowle-Grider, Ronald; Wang, Rencheng; Wang, Cheng; Schwaiger-Haber, Michaela; Shriver, Leah P; Patti, Gary J.
Afiliação
  • Wang Y; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Stancliffe E; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Fowle-Grider R; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Wang R; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Wang C; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Schwaiger-Haber M; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Shriver LP; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Patti GJ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracin
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Article em En | MEDLINE | ID: mdl-35973426
ABSTRACT
Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malatos / NAD Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malatos / NAD Idioma: En Ano de publicação: 2022 Tipo de documento: Article