Your browser doesn't support javascript.
loading
Genome characterization and CRISPR-Cas9 editing of a human neocentromere.
Palazzo, Antonio; Piccolo, Ilaria; Minervini, Crescenzio Francesco; Purgato, Stefania; Capozzi, Oronzo; D'Addabbo, Pietro; Cumbo, Cosimo; Albano, Francesco; Rocchi, Mariano; Catacchio, Claudia Rita.
Afiliação
  • Palazzo A; Department of Biology, University of Bari Aldo Moro, Bari, Italy. antonio.palazzo@uniba.it.
  • Piccolo I; Department of Biology, University of Bari Aldo Moro, Bari, Italy.
  • Minervini CF; Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy.
  • Purgato S; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
  • Capozzi O; Department of Biology, University of Bari Aldo Moro, Bari, Italy.
  • D'Addabbo P; Department of Biology, University of Bari Aldo Moro, Bari, Italy.
  • Cumbo C; Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy.
  • Albano F; Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari Aldo Moro, Bari, Italy.
  • Rocchi M; Department of Biology, University of Bari Aldo Moro, Bari, Italy.
  • Catacchio CR; Department of Biology, University of Bari Aldo Moro, Bari, Italy. claudiarita.catacchio@uniba.it.
Chromosoma ; 131(4): 239-251, 2022 12.
Article em En | MEDLINE | ID: mdl-35978051
The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Centrômero / Sistemas CRISPR-Cas Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Centrômero / Sistemas CRISPR-Cas Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article