Your browser doesn't support javascript.
loading
Heterostructured Bi2S3/MoS2 Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions.
Liu, Xuejing; Xu, Xiaolong; Li, Faying; Xu, Jingyi; Ma, Hongmin; Sun, Xu; Wu, Dan; Zhang, Changwen; Ren, Xiang; Wei, Qin.
Afiliação
  • Liu X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Xu X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Li F; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Xu J; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Ma H; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Sun X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Wu D; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Zhang C; School of Physics and Technology, University of Jinan, Jinan 250022 Shandong, China.
  • Ren X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
  • Wei Q; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.
ACS Appl Mater Interfaces ; 14(34): 38835-38843, 2022 Aug 31.
Article em En | MEDLINE | ID: mdl-35996968
ABSTRACT
Developing efficient electrocatalysts to realize the nitrate reduction reaction (eNO3-RR) for ammonia synthesis as an alternative to the traditional Haber-Bosch production process is of great significance. Herein, the heterostructured Bi2S3/MoS2 nanoarrays were successfully synthesized by Bi2S3 nanowires anchored on MoS2 nanosheets. Owing to the interfacial coupling effect, both particular surface area and exposure active sites increase. Density functional theory further uncovered that the excellent activity originates from charge transfer of the interface and a low potential barrier of 0.58 eV for hydrogenation of *NO to *NOH on Bi2S3/MoS2. Compared with pure Bi2S3 and MoS2 catalysts, the heterostructured Bi2S3/MoS2 nanoarrays exhibit a superior NH3 yield of 15.04 × 10-2 mmol·h-1·cm-2 and a Faraday efficiency of 88.4% at -0.8 V versus the reversible hydrogen electrode. This work provides a new avenue to explore advanced electrocatalysts, which is expected to shorten the distance from the practical application of the eNO3-RR technology.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article