Your browser doesn't support javascript.
loading
Low-power compact continuous-wave stimulated emission depletion microscopy.
Han, HongYi; Wang, Luwei; Zhou, Hanqiu; Xing, Xiuquan; Guo, Yong; Zhu, Yinru; Yan, Wei; Qu, Junle.
Afiliação
  • Han H; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Wang L; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Zhou H; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Xing X; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Guo Y; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Zhu Y; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Yan W; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
  • Qu J; Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
J Biophotonics ; 16(2): e202200233, 2023 02.
Article em En | MEDLINE | ID: mdl-36054472
ABSTRACT
Stimulated emission depletion (STED) microscopy can break the optical diffraction barrier and provide subdiffraction resolution. According to the STED superresolution imaging principle, the resolution of STED is positively related to the power of the depletion laser. However, high-laser power largely limits the study of living cells or living bodies. Moreover, the high complexity and high cost of conventional pulsed STED microscopy limit the application of this technique. Therefore, this paper describes a simple continuous-wave STED (CW-STED) system constructed on a 45 × 60 cm breadboard and combined with digitally enhanced (DE) technology; low-power superresolution imaging is realized, which has the advantages of reducing system complexity and cost. The low-system complexity, low cost, and low-power superresolution imaging features of CW-STED have great potential to advance the application of STED microscopy in biological research.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lasers / Luz Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lasers / Luz Idioma: En Ano de publicação: 2023 Tipo de documento: Article