Your browser doesn't support javascript.
loading
Micapipe: A pipeline for multimodal neuroimaging and connectome analysis.
Cruces, Raúl R; Royer, Jessica; Herholz, Peer; Larivière, Sara; Vos de Wael, Reinder; Paquola, Casey; Benkarim, Oualid; Park, Bo-Yong; Degré-Pelletier, Janie; Nelson, Mark C; DeKraker, Jordan; Leppert, Ilana R; Tardif, Christine; Poline, Jean-Baptiste; Concha, Luis; Bernhardt, Boris C.
Afiliação
  • Cruces RR; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada. Electronic address: raul.rodriguezcruces@mcgill.ca.
  • Royer J; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada. Electronic address: jessi
  • Herholz P; NeuroDataScience - ORIGAMI lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Larivière S; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Vos de Wael R; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Paquola C; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada; Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.
  • Benkarim O; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Park BY; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada; Department of Data Science, Inha University, Incheon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science
  • Degré-Pelletier J; Labo IDEA, Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada.
  • Nelson MC; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • DeKraker J; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Leppert IR; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Tardif C; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Poline JB; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
  • Concha L; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Mexico.
  • Bernhardt BC; Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada. Electronic address: boris.bernhardt@mcgill.ca.
Neuroimage ; 263: 119612, 2022 11.
Article em En | MEDLINE | ID: mdl-36070839
Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Processamento Eletrônico de Dados / Neuroimagem / Conectoma Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Processamento Eletrônico de Dados / Neuroimagem / Conectoma Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article