Your browser doesn't support javascript.
loading
Influence of Excess Charge on Water Adsorption on the BiVO4(010) Surface.
Wang, Wennie; Favaro, Marco; Chen, Emily; Trotochaud, Lena; Bluhm, Hendrik; Choi, Kyoung-Shin; van de Krol, Roel; Starr, David E; Galli, Giulia.
Afiliação
  • Wang W; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
  • Favaro M; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
  • Chen E; Department of Chemistry, University of Chicago, Chicago, Illinois 60615, United States.
  • Trotochaud L; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Bluhm H; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Choi KS; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  • van de Krol R; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
  • Starr DE; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Berlin 10623, Germany.
  • Galli G; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
J Am Chem Soc ; 144(37): 17173-17185, 2022 Sep 21.
Article em En | MEDLINE | ID: mdl-36074011
ABSTRACT
We present a combined computational and experimental study of the adsorption of water on the Mo-doped BiVO4(010) surface, revealing how excess electrons influence the dissociation of water and lead to hydroxyl-induced alterations of the surface electronic structure. By comparing ambient pressure resonant photoemission spectroscopy (AP-ResPES) measurements with the results of first-principles calculations, we show that the dissociation of water on the stoichiometric Mo-doped BiVO4(010) surface stabilizes the formation of a small electron polaron on the VO4 tetrahedral site and leads to an enhanced concentration of localized electronic charge at the surface. Our calculations demonstrate that the dissociated water accounts for the enhanced V4+ signal observed in ambient pressure X-ray photoelectron spectroscopy and the enhanced signal of a small electron polaron inter-band state observed in AP-ResPES measurements. For ternary oxide surfaces, which may contain oxygen vacancies in addition to other electron-donating dopants, our study reveals the importance of defects in altering the surface reactivity toward water and the concomitant water-induced modifications to the electronic structure.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article