Your browser doesn't support javascript.
loading
Valorisation of Recycled Cement Paste: Feasibility of a Short-Duration Carbonation Process.
Silva, André; Nogueira, Rita; Bogas, Alexandre; Abrantes, João; Wawrzynczak, Dariusz; Sciubidlo, Aleksandra; Majchrzak-Kuceba, Izabela.
Afiliação
  • Silva A; Civil Engineering Research Innovation Sustainability, Department of Civil Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal.
  • Nogueira R; Civil Engineering Research Innovation Sustainability, Department of Civil Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal.
  • Bogas A; Civil Engineering Research Innovation Sustainability, Department of Civil Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal.
  • Abrantes J; proMetheus, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal.
  • Wawrzynczak D; Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland.
  • Sciubidlo A; Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland.
  • Majchrzak-Kuceba I; Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland.
Materials (Basel) ; 15(17)2022 Aug 30.
Article em En | MEDLINE | ID: mdl-36079381
Cement paste powder (CPP) is a by-product of the recycling process of concrete with an elevated carbonation capability and potential to be recycled as a binding material in new concrete batches. The application of a carbonation treatment to CPP improves this potential even more, besides the evident gains in terms of CO2 net balance. However, the long duration usually adopted in this treatment, from 3 to 28 days, hampers the industrial viability of the process. We studied the feasibility of a short-duration carbonation process, with a duration of two hours, carrying out a comprehensive characterization of the material throughout the process. The test was performed on CPP with an average initial water content of 16.9%, exposed to a CO2 concentration of 80%. The results demonstrate two main carbonation rates: a rapid growth rate in the first 18 minutes of the process, involving all the calcium-bearing compounds in CPP, and a slow growth rate afterwards, where only C-S-H contributes to the carbonation reaction. During the 2 h carbonation process, the main CPP compounds, calcium silicate hydrate (C-S-H) and calcium hydroxide (CH), reached different carbonation degrees, 31% and 94%, with, however, close CO2 uptake values, 8% and 11%, respectively. Nevertheless, the total CO2 uptake for this process (≈19%) attained values not distant from the values usually obtained in a carbonation of 12 days or more (19-25%). Hence, these findings highlight the blocking role of C-S-H in the carbonation process, indicating that longer carbonation periods are only going to be useful if an effective carbonation of this compound is accomplished. In the present scenario, where CH is the main contributor to the reaction, the reduction in the process duration is feasible.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article