Your browser doesn't support javascript.
loading
Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe2O3-NPs) in Mice.
Abd El-Aziz, Yasmin M; Hendam, Basma M; Al-Salmi, Fawziah A; Qahl, Safa H; Althubaiti, Eman H; Elsaid, Fahmy G; Shati, Ali A; Hosny, Nasser M; Fayad, Eman; Abu Almaaty, Ali H.
Afiliação
  • Abd El-Aziz YM; Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt.
  • Hendam BM; Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura 35516, Egypt.
  • Al-Salmi FA; Department of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia.
  • Qahl SH; Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
  • Althubaiti EH; Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia.
  • Elsaid FG; Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia.
  • Shati AA; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
  • Hosny NM; Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia.
  • Fayad E; Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt.
  • Abu Almaaty AH; Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Article em En | MEDLINE | ID: mdl-36080111
ABSTRACT
An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article