Contrasting effects of DOI and lisuride on impulsive decision-making in delay discounting task.
Psychopharmacology (Berl)
; 239(11): 3551-3565, 2022 Nov.
Article
em En
| MEDLINE
| ID: mdl-36107207
RATIONALE: The 5-HT2A receptor is the major target of classic hallucinogens. Both DOI (2,5-dimethoxy-4-iodoamphetamine) and lisuride act at 5-HT2A receptors, and lisuride shares comparable affinity with DOI and acts as a partial agonist at 5-HT2A receptors. However, not like DOI, lisuride lacks hallucinogenic properties. Impulsive decision-making refers to the preference for an immediate small reinforcer (SR) over a delayed large reinforcer (LR). OBJECTIVES: The current study aims to compare the effects of DOI and lisuride on impulsive decision-making and further to investigate the possible receptor mechanisms responsible for the actions of the two drugs. METHODS: Impulsive decision-making was evaluated in male Sprague-Dawley rats by the percentage of choice for the LR in delay discounting task (DDT). Delay to the LR changed in an ascending order (0, 4, 8, 16, and 32 s) across one session. RESULTS: DOI (0.5 and 1.0 mg/kg) increased impulsive decision-making, and the effects of DOI (1.0 mg/kg) were blocked by the 5-HT2A receptor antagonist ketanserin (1.0 mg/kg) rather than the 5-HT2C receptor antagonist SB-242084 (1.0 mg/kg). Contrarily, lisuride (0.1, 0.3, and 0.5 mg/kg) decreased impulsive decision-making. The effects of lisuride (0.3 mg/kg) were not antagonized by ketanserin (1.0 mg/kg), selective 5-HT1A antagonist WAY-100635 (1.0 mg/kg), or selective dopamine D4 receptor antagonist L-745870 (1.0 mg/kg) but were attenuated by the selective dopamine D2/D3 receptor antagonist tiapride (40 mg/kg). CONCLUSIONS: DOI and lisuride have contrasting effects on impulsive decision-making via distinct receptors. DOI-induced increase of impulsivity is mediated by the 5-HT2A receptor, while lisuride-induced inhibition of impulsivity is regulated by the dopamine D2/D3 receptor.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Desvalorização pelo Atraso
/
Alucinógenos
Limite:
Animals
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article