Your browser doesn't support javascript.
loading
High throughput embryonic zebrafish test with automated dechorionation to evaluate nanomaterial toxicity.
Carbaugh, Chance M; van der Schalie, William H; Widder, Mark W.
Afiliação
  • Carbaugh CM; Walter Reed Army Institute of Research, Silver Springs, Maryland, United States of America.
  • van der Schalie WH; Oak Ridge Institute for Science Technology, Oak Ridge, Tennessee, United States of America.
  • Widder MW; Walter Reed Army Institute of Research, Silver Springs, Maryland, United States of America.
PLoS One ; 17(9): e0274011, 2022.
Article em En | MEDLINE | ID: mdl-36112591
ABSTRACT
Engineered nanomaterials pose occupational health and environmental concerns as they possess unique physical and chemical properties that can contribute to toxicity. High throughput toxicity screening methods are needed to address the increasing number of nanomaterials in production. Here we used a zebrafish photomotor response (PMR) test to evaluate a set of fifteen nanomaterials with military relevance. Automated dechorionation of zebrafish embryos was used to enhance nanomaterials bioavailability. Optimal PMR activity in zebrafish embryos was found at 30-31 hours post-fertilization (hpf). Behavioral and toxicological responses were measured at 30 and 120 hpf; behavioral responses were found for thirteen of the fifteen nanomaterials and acute toxicity (LC50) levels for nine of the fifteen nanomaterials below the maximum test concentration of 500 µg/ml. Physico-chemical characterization of the nanomaterials detected endotoxin and bacterial contamination in two of the tested samples, which may have contributed to observed toxicity and reinforces the need for physical and chemical characterization of nanomaterials use in toxicity testing. The zebrafish PMR test, together with automated dechorionation, provides an initial rapid assessment of the behavioral effects and toxicity of engineered nanomaterials that can be followed up by physico-chemical characterization if toxicity is detected, reducing the amount of time and monetary constraints of physico-chemical testing.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Nanoestruturas Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Nanoestruturas Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article