Your browser doesn't support javascript.
loading
Source oxygen contributions of primary nitrate emitted from biomass burning.
Song, Wei; Liu, Xue-Yan.
Afiliação
  • Song W; School of Earth System Science, Tianjin University, Tianjin 300072, China.
  • Liu XY; School of Earth System Science, Tianjin University, Tianjin 300072, China. Electronic address: liuxueyan@tju.edu.cn.
Sci Total Environ ; 854: 158736, 2023 Jan 01.
Article em En | MEDLINE | ID: mdl-36122720
ABSTRACT
Atmospheric nitrate (NO3-) produced by photochemical oxidation in the atmosphere has high oxygen isotope ratios (δ18O values). Recently, the primary NO3- emitted from combustion sources was found to have much lower δ18O values. However, it is unclear how and to what extents the low δ18O signatures were controlled by major O sources during the primary NO3- formation of combustion processes. Here, we first measured concentrations and δ18O values of NO3- from burning five biomass materials (bb-NO3- and δ18Obb-NO3-, respectively) in China. Distinctly higher concentration levels of the bb-NO3- emissions (42.1 ± 8.1 µmol m-3) than ambient NO3- suggest it is a potential source of atmospheric NO3- pollution. Much lower δ18Obb-NO3- signatures (27.6 ± 2.7 ‰) than ambient NO3- support it as a primary emission source with different O sources and formation mechanism from secondary NO3-. Isotope mass-balance modeling revealed that atmospheric O2 and the biomass O dominated the O of bb-NO3- (53 ± 7 % and 40 ± 4 %, respectively) over the aqueous vapor (7 ± 3 %). Besides, we found increasing δ18Obb-NO3- values with the biomass N contents and relatively lower δ18Obb-NO3- values for biomasses with higher carbon (C) and lower O contents, indicating that biomass C, N, and O contents may influence the source O contributions of the bb-NO3-. This work provides a novel isotope analysis on the O source contribution of the bb-NO3-, which is useful for understanding the formation mechanism of combustion-related NO3- sources and evaluating the primary NO3- emissions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article