Bioinformatics algorithm for lung adenocarcinoma based on macropinocytosis-related long noncoding RNAs as a reliable indicator for predicting survival outcomes and selecting suitable anti-tumor drugs.
Medicine (Baltimore)
; 101(38): e30543, 2022 Sep 23.
Article
em En
| MEDLINE
| ID: mdl-36197217
As a highly conserved endocytic mechanism during evolution, macropinocytosis is enhanced in several malignant tumors, which promotes tumor growth by ingesting extracellular nutrients. Recent research has emphasized the crucial role of macropinocytosis in tumor immunity. In the present study, we established a new macropinocytosis-related algorithm comprising molecular subtypes and a prognostic signature, in which patients with lung adenocarcinoma (LUAD) were classified into different clusters and risk groups based on the expression of 16 macropinocytosis-related long noncoding RNAs. According to the molecular subtypes, we discovered that patients with LUAD in cluster1 had a higher content of stromal cells and immune cells, stronger intensity of immune activities, higher expression of PD1, PDL1, and HAVCR2, and a higher tumor mutational burden, while patients in cluster2 exhibited better survival advantages. Furthermore, the constructed prognostic signature revealed that low-risk patients showed better survival outcomes, earlier tumor stage, higher abundance of stromal cells and immune cells, higher immune activities, higher expression of PD1, PDL1, CTLA4, and HAVCR2, and more sensitivity to Paclitaxel and Erlotinib. By contrast, patients with high scores were more suitable for Gefitinib treatment. In conclusion, the novel algorithm that divided patients with LUAD into different groups according to their clusters and risk groups, which could provide theoretical support for predicting their survival outcomes and selecting drugs for chemotherapy, targeted therapy, and immunotherapy.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
RNA Longo não Codificante
/
Adenocarcinoma de Pulmão
/
Neoplasias Pulmonares
/
Antineoplásicos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article