Your browser doesn't support javascript.
loading
Bisphenol A impairs renal function by reducing Na+/K+-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo.
Yoo, Min Heui; Lee, Seung-Jin; Kim, Woojin; Kim, Younhee; Kim, Yong-Bum; Moon, Kyoung-Sik; Lee, Byoung-Seok.
Afiliação
  • Yoo MH; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: minheui.yoo@kitox.re.kr.
  • Lee SJ; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: lee.seungjin@kitox.re.kr.
  • Kim W; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: woojinkim@kitox.re.kr.
  • Kim Y; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: july@kitox.re.kr.
  • Kim YB; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: ybkim@kitox.re.kr.
  • Moon KS; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: ksmoon@kitox.re.kr.
  • Lee BS; Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea. Electronic address: bslee@kitox.re.kr.
Ecotoxicol Environ Saf ; 246: 114141, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36206637
ABSTRACT
The kidney proximal tubule is responsible for reabsorbing water and NaCl to maintain the homeostasis of the body fluids, electrolytes, and nutrients. Thus, abnormal functioning of the renal proximal tubule can lead to life-threatening imbalances. Bisphenol A (BPA) has been used for decades as a representative chemical in household plastic products, but studies on its effects on the kidney proximal tubule are insufficient. In this study, immunocytochemical and cytotoxicity tests were performed using two- and three-dimensional human renal proximal tubular epithelial cell (hRPTEC) cultures to investigate the impact of low-dose BPA (1-10 µM) exposure. BPA was found to interfere with straight tubule formation as observed by low filamentous actin formation and reduced Na+/K+-ATPase expression in the tubules of hRPTEC 3D cultures. Similar results were observed in rat pup kidneys following oral administration of 250 mg/kg BPA. Moreover, the expression of HO-1 and 8-OHdG, key markers for oxidative stress, was increased in vitro and in vivo following BPA administration, whereas that of OAT1 and OAT, important transporters of the renal proximal tubules, was not altered. Overall, no-observed-adverse-effect-level (NOAEL)-dose BPA exposure can decrease renal function by promoting abnormal tubular formation both in vitro and in vivo. Therefore, we propose that although it does not exhibit life-threatening toxicity, exposure to low levels of BPA can negatively affect homeostasis in the body by means of long-term deterioration of renal proximal tubular function in humans.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actinas / ATPase Trocadora de Sódio-Potássio Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actinas / ATPase Trocadora de Sódio-Potássio Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article