Your browser doesn't support javascript.
loading
Unique H2-utilizing lithotrophy in serpentinite-hosted systems.
Nobu, Masaru Konishi; Nakai, Ryosuke; Tamazawa, Satoshi; Mori, Hiroshi; Toyoda, Atsushi; Ijiri, Akira; Suzuki, Shino; Kurokawa, Ken; Kamagata, Yoichi; Tamaki, Hideyuki.
Afiliação
  • Nobu MK; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Ibaraki, Tsukuba, 305-8566, Japan. m.nobu@aist.go.jp.
  • Nakai R; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Ibaraki, Tsukuba, 305-8566, Japan.
  • Tamazawa S; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Sapporo, 062-8517, Japan.
  • Mori H; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Ibaraki, Tsukuba, 305-8566, Japan.
  • Toyoda A; Horonobe Research Institute for the Subsurface Environment (H-RISE), Northern Advancement Center for Science & Technology, 5-3 Sakaemachi, Horonobe, Teshio, Hokkaido, 098-3221, Japan.
  • Ijiri A; National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
  • Suzuki S; National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
  • Kurokawa K; Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe Otsu, Nankoku, Kochi, Japan.
  • Kamagata Y; Institute for Extra-Cutting-Edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
  • Tamaki H; Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
ISME J ; 17(1): 95-104, 2023 01.
Article em En | MEDLINE | ID: mdl-36207493
ABSTRACT
Serpentinization of ultramafic rocks provides molecular hydrogen (H2) that can support lithotrophic metabolism of microorganisms, but also poses extremely challenging conditions, including hyperalkalinity and limited electron acceptor availability. Investigation of two serpentinization-active systems reveals that conventional H2-/CO2-dependent homoacetogenesis is thermodynamically unfavorable in situ due to picomolar CO2 levels. Through metagenomics and thermodynamics, we discover unique taxa capable of metabolism adapted to the habitat. This included a novel deep-branching phylum, "Ca. Lithacetigenota", that exclusively inhabits serpentinite-hosted systems and harbors genes encoding alternative modes of H2-utilizing lithotrophy. Rather than CO2, these putative metabolisms utilize reduced carbon compounds detected in situ presumably serpentinization-derived formate and glycine. The former employs a partial homoacetogenesis pathway and the latter a distinct pathway mediated by a rare selenoprotein-the glycine reductase. A survey of microbiomes shows that glycine reductases are diverse and nearly ubiquitous in serpentinite-hosted environments. "Ca. Lithacetigenota" glycine reductases represent a basal lineage, suggesting that catabolic glycine reduction is an ancient bacterial innovation by Terrabacteria for gaining energy from geogenic H2 even under hyperalkaline, CO2-poor conditions. Unique non-CO2-reducing metabolisms presented here shed light on potential strategies that extremophiles may employ for overcoming a crucial obstacle in serpentinization-associated environments, features potentially relevant to primordial lithotrophy in early Earth.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota / Hidrogênio Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota / Hidrogênio Idioma: En Ano de publicação: 2023 Tipo de documento: Article