Your browser doesn't support javascript.
loading
Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH3 gas sensing at room temperature.
Su, Pi-Guey; Tsai, Meng-Shian; Lu, Chia-Jung.
Afiliação
  • Su PG; Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan. spg@ulive.pccu.edu.tw.
  • Tsai MS; Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
  • Lu CJ; Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
Anal Methods ; 14(41): 4113-4121, 2022 Oct 27.
Article em En | MEDLINE | ID: mdl-36214083
ABSTRACT
Room temperature NH3 gas sensors composed of noble metal (Au, Ag or Pt)/polythiophene/reduced graphene oxide (Au, Ag or Pt/PTh/rGO) ternary nanocomposite films were fabricated using a simple one-pot redox reaction. The surface morphology and composition of Au, Ag or Pt/PTh/rGO ternary nanocomposite films were analyzed using Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films, obviously bright Au nanoparticles were observed on the surface of the massive lamination PTh film which wrapped the rGO, and encapsulated Au nanoparticles were observed in the Au/PTh/rGO film. Comparative gas sensing results showed that the Au/PTh/rGO ternary nanocomposite film had the highest response compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films at room temperature, especially when the testing concentration of NH3 gas was below 5 ppm. The Au/PTh/rGO ternary nanocomposite film also had a fast response time and good reproducibility. The combination of the high catalytic activity of naked Au nanoparticles and the formation of effective carrier transfer channels by encapsulated Au nanoparticles was responsible for the improved response of the Au/PTh/rGO ternary nanocomposite film.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article