Your browser doesn't support javascript.
loading
Seismic detection of a deep mantle discontinuity within Mars by InSight.
Huang, Quancheng; Schmerr, Nicholas C; King, Scott D; Kim, Doyeon; Rivoldini, Attilio; Plesa, Ana-Catalina; Samuel, Henri; Maguire, Ross R; Karakostas, Foivos; Lekic, Vedran; Charalambous, Constantinos; Collinet, Max; Myhill, Robert; Antonangeli, Daniele; Drilleau, Mélanie; Bystricky, Misha; Bollinger, Caroline; Michaut, Chloé; Gudkova, Tamara; Irving, Jessica C E; Horleston, Anna; Fernando, Benjamin; Leng, Kuangdai; Nissen-Meyer, Tarje; Bejina, Frederic; Bozdag, Ebru; Beghein, Caroline; Waszek, Lauren; Siersch, Nicki C; Scholz, John-Robert; Davis, Paul M; Lognonné, Philippe; Pinot, Baptiste; Widmer-Schnidrig, Rudolf; Panning, Mark P; Smrekar, Suzanne E; Spohn, Tilman; Pike, William T; Giardini, Domenico; Banerdt, W Bruce.
Afiliação
  • Huang Q; Department of Geology, University of Maryland, College Park, MD 20742.
  • Schmerr NC; Department of Geophysics, Colorado School of Mines, Golden, CO 80401.
  • King SD; Department of Geology, University of Maryland, College Park, MD 20742.
  • Kim D; Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
  • Rivoldini A; Department of Geology, University of Maryland, College Park, MD 20742.
  • Plesa AC; Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland.
  • Samuel H; Royal Observatory of Belgium, 1180 Brussels, Belgium.
  • Maguire RR; Institute of Planetary Research, German Aerospace Center, 12489 Berlin, Germany.
  • Karakostas F; Institut de Physique du Globe de Paris, Université de Paris, CNRS, 75005 Paris, France.
  • Lekic V; Department of Geology, University of Maryland, College Park, MD 20742.
  • Charalambous C; Department of Geology, University of Maryland, College Park, MD 20742.
  • Collinet M; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40128 Bologna, Italy.
  • Myhill R; Department of Geology, University of Maryland, College Park, MD 20742.
  • Antonangeli D; Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
  • Drilleau M; Institute of Planetary Research, German Aerospace Center, 12489 Berlin, Germany.
  • Bystricky M; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom.
  • Bollinger C; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France.
  • Michaut C; Institut Supérieur de l'Aéronautique et de l'Espace, 31400 Toulouse, France.
  • Gudkova T; Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France.
  • Irving JCE; Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France.
  • Horleston A; Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, 69007 France.
  • Fernando B; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow 123242, Russia.
  • Leng K; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom.
  • Nissen-Meyer T; School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom.
  • Bejina F; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom.
  • Bozdag E; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom.
  • Beghein C; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom.
  • Waszek L; Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France.
  • Siersch NC; Department of Geophysics, Colorado School of Mines, Golden, CO 80401.
  • Scholz JR; Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
  • Davis PM; Physical Sciences Group, James Cook University, Douglas, QLD 4811, Australia.
  • Lognonné P; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France.
  • Pinot B; Max Planck Institute for Solar System Research, 37077 Göttingen, Germany.
  • Widmer-Schnidrig R; Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
  • Panning MP; Institut de Physique du Globe de Paris, Université de Paris, CNRS, 75005 Paris, France.
  • Smrekar SE; Institut Supérieur de l'Aéronautique et de l'Espace, 31400 Toulouse, France.
  • Spohn T; Black Forest Observatory, Stuttgart University, 77709 Wolfach, Germany.
  • Pike WT; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
  • Giardini D; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
  • Banerdt WB; Institute of Planetary Research, German Aerospace Center, 12489 Berlin, Germany.
Proc Natl Acad Sci U S A ; 119(42): e2204474119, 2022 10 18.
Article em En | MEDLINE | ID: mdl-36215469
ABSTRACT
Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars' deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA's InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 [Formula see text] 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 [Formula see text] 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Marte / Meio Ambiente Extraterreno Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Marte / Meio Ambiente Extraterreno Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article