Your browser doesn't support javascript.
loading
Accounting for retest effects in cognitive testing with the Bayesian double exponential model via intensive measurement burst designs.
Oravecz, Zita; Harrington, Karra D; Hakun, Jonathan G; Katz, Mindy J; Wang, Cuiling; Zhaoyang, Ruixue; Sliwinski, Martin J.
Afiliação
  • Oravecz Z; Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States.
  • Harrington KD; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, United States.
  • Hakun JG; Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States.
  • Katz MJ; Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States.
  • Wang C; Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States.
  • Zhaoyang R; Department of Neurology, Pennsylvania State University, Hershey, PA, United States.
  • Sliwinski MJ; Department of Psychology, Pennsylvania State University, University Park, PA, United States.
Front Aging Neurosci ; 14: 897343, 2022.
Article em En | MEDLINE | ID: mdl-36225891
ABSTRACT
Monitoring early changes in cognitive performance is useful for studying cognitive aging as well as for detecting early markers of neurodegenerative diseases. Repeated evaluation of cognition via a measurement burst design can accomplish this goal. In such design participants complete brief evaluations of cognition, multiple times per day for several days, and ideally, repeat the process once or twice a year. However, long-term cognitive change in such repeated assessments can be masked by short-term within-person variability and retest learning (practice) effects. In this paper, we show how a Bayesian double exponential model can account for retest gains across measurement bursts, as well as warm-up effects within a burst, while quantifying change across bursts in peak performance. We also highlight how this approach allows for the inclusion of person-level predictors and draw intuitive inferences on cognitive change with Bayesian posterior probabilities. We use older adults' performance on cognitive tasks of processing speed and spatial working memory to demonstrate how individual differences in peak performance and change can be related to predictors of aging such as biological age and mild cognitive impairment status.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article