Your browser doesn't support javascript.
loading
Activating Nitrogen-doped Graphene Oxygen Reduction Electrocatalysts in Acidic Electrolytes using Hydrophobic Cavities and Proton-conductive Particles.
Singh, Santosh K; Takeyasu, Kotaro; Homma, Kaito; Ito, Shigeharu; Morinaga, Takashi; Endo, Yuto; Furukawa, Moeko; Mori, Toshiyuki; Ogasawara, Hirohito; Nakamura, Junji.
Afiliação
  • Singh SK; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Takeyasu K; Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India.
  • Homma K; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Ito S; Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Morinaga T; R&D Center for Zero CO2 Emission with Functional Materials, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Endo Y; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Furukawa M; Department of Creative Engineering, National Institute of Technology (KOSEN), Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan.
  • Mori T; Department of Creative Engineering, National Institute of Technology (KOSEN), Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan.
  • Ogasawara H; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
  • Nakamura J; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
Angew Chem Int Ed Engl ; 61(51): e202212506, 2022 Dec 19.
Article em En | MEDLINE | ID: mdl-36240783
ABSTRACT
Although pyridinic-nitrogen (pyri-N) doped graphene is highly active for the oxygen reduction reaction (ORR) of fuel cells in alkaline media, the activity critically decreases under acidic conditions. We report on how to prevent the deactivation based on the mechanistic understanding that O 2 + p y r i - N H + + e - → O 2 , a + p y r i - N H ${{{\rm O}}_{2}+{\rm p}{\rm y}{\rm r}{\rm i}{\rm { -}}{\rm N}{{\rm H}}^{+}+{{\rm e}}^{-}{\to }_{\ }^{{\rm \ }}{{\rm O}}_{2,{\rm a}}+{\rm p}{\rm y}{\rm r}{\rm i}{\rm { -}}{\rm N}{\rm H}}$ governs the ORR kinetics. First, we considered that the deactivation is due to the hydration of pyri-NH+ , leading to a lower shift of the redox potential. Introducing the hydrophobic cavity prevented the hydration of pyri-NH+ but inhibited the proton transport. We then increased proton conductivity in the hydrophobic cavity by introducing SiO2 particles coated with ionic liquid polymer/Nafion® which kept the high onset potentials with an increased current density even in acidic media.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article