Your browser doesn't support javascript.
loading
Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule.
Pérez-Callejo, G; Vlachos, C; Walsh, C A; Florido, R; Bailly-Grandvaux, M; Vaisseau, X; Suzuki-Vidal, F; McGuffey, C; Beg, F N; Bradford, P; Ospina-Bohórquez, V; Batani, D; Raffestin, D; Colaïtis, A; Tikhonchuk, V; Casner, A; Koenig, M; Albertazzi, B; Fedosejevs, R; Woolsey, N; Ehret, M; Debayle, A; Loiseau, P; Calisti, A; Ferri, S; Honrubia, J; Kingham, R; Mancini, R C; Gigosos, M A; Santos, J J.
Afiliação
  • Pérez-Callejo G; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Vlachos C; Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
  • Walsh CA; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Florido R; Institute of Plasma Physics & Lasers, Hellenic Mediterranean University Research Centre, 74100 Rethymno, Greece.
  • Bailly-Grandvaux M; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Vaisseau X; iUNAT-Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
  • Suzuki-Vidal F; Center for Energy Research, University of California-San Diego, La Jolla, California 92093, USA.
  • McGuffey C; CEA, DAM, DIF, F-91297 Arpajon, France.
  • Beg FN; Plasma Physics Group, The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom.
  • Bradford P; General Atomics, San Diego, California 92121, USA.
  • Ospina-Bohórquez V; Center for Energy Research, University of California-San Diego, La Jolla, California 92093, USA.
  • Batani D; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Raffestin D; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Colaïtis A; CEA, DAM, DIF, F-91297 Arpajon, France.
  • Tikhonchuk V; University of Salamanca, 37008 Salamanca, Spain.
  • Casner A; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France.
  • Koenig M; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Albertazzi B; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Fedosejevs R; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Woolsey N; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Ehret M; ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, 25241 Dolní Brezany, Czech Republic.
  • Debayle A; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France.
  • Loiseau P; CEA-CESTA, CS 60001, 33116 Le Barp Cedex, France.
  • Calisti A; LULI-CNRS, CEA, Sorbonne Universites, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France.
  • Ferri S; LULI-CNRS, CEA, Sorbonne Universites, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France.
  • Honrubia J; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G1R1 Alberta, Canada.
  • Kingham R; Department of Physics, University of York, Heslington YO10 5DD, United Kingdom.
  • Mancini RC; Centro de Laseres Pulsados, Building M5, Science Park, 37185 Villamayor, Salamanca, Spain.
  • Gigosos MA; CEA, DAM, DIF, F-91297 Arpajon, France.
  • Santos JJ; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France.
Phys Rev E ; 106(3-2): 035206, 2022 Sep.
Article em En | MEDLINE | ID: mdl-36266806
ABSTRACT
Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article