Your browser doesn't support javascript.
loading
Yap and Taz promote osteogenesis and prevent chondrogenesis in neural crest cells in vitro and in vivo.
Zhao, Xiaolei; Tang, Li; Le, Tram P; Nguyen, Bao H; Chen, Wen; Zheng, Mingjie; Yamaguchi, Hiroyuki; Dawson, Brian; You, Shuangjie; Martinez-Traverso, Idaliz M; Erhardt, Shannon; Wang, Jianxin; Li, Min; Martin, James F; Lee, Brendan H; Komatsu, Yoshihiro; Wang, Jun.
Afiliação
  • Zhao X; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Tang L; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
  • Le TP; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Nguyen BH; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
  • Chen W; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Zheng M; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Yamaguchi H; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Dawson B; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
  • You S; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Martinez-Traverso IM; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA.
  • Erhardt S; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
  • Wang J; Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Li M; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA.
  • Martin JF; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
  • Lee BH; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
  • Komatsu Y; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
  • Wang J; Texas Heart Institute, Houston, TX 77030, USA.
Sci Signal ; 15(757): eabn9009, 2022 10 25.
Article em En | MEDLINE | ID: mdl-36282910
Neural crest cells (NCCs) are multipotent stem cells that can differentiate into multiple cell types, including the osteoblasts and chondrocytes, and constitute most of the craniofacial skeleton. Here, we show through in vitro and in vivo studies that the transcriptional regulators Yap and Taz have redundant functions as key determinants of the specification and differentiation of NCCs into osteoblasts or chondrocytes. Primary and cultured NCCs deficient in Yap and Taz switched from osteogenesis to chondrogenesis, and NCC-specific deficiency for Yap and Taz resulted in bone loss and ectopic cartilage in mice. Yap bound to the regulatory elements of key genes that govern osteogenesis and chondrogenesis in NCCs and directly regulated the expression of these genes, some of which also contained binding sites for the TCF/LEF transcription factors that interact with the Wnt effector ß-catenin. During differentiation of NCCs in vitro and NCC-derived osteogenesis in vivo, Yap and Taz promoted the expression of osteogenic genes such as Runx2 and Sp7 but repressed the expression of chondrogenic genes such as Sox9 and Col2a1. Furthermore, Yap and Taz interacted with ß-catenin in NCCs to coordinately promote osteoblast differentiation and repress chondrogenesis. Together, our data indicate that Yap and Taz promote osteogenesis in NCCs and prevent chondrogenesis, partly through interactions with the Wnt-ß-catenin pathway.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Condrogênese Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Condrogênese Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article