Your browser doesn't support javascript.
loading
Large-scale flexible-resonators with temperature insensitivity employing superoleophobic substrates.
Opt Express ; 30(22): 40897-40905, 2022 Oct 24.
Article em En | MEDLINE | ID: mdl-36299014
ABSTRACT
Whispering gallery mode polymer resonators are becoming competitive with devices made of other materials, however, the inherent thermal sensitivity of the materials and the small size limit their applications, such as high-precision optical gyroscope. Here, a method is proposed for fabricating large-scale NOA65 resonators with quality factors greater than 105 on a chip employing superoleophobic. The sandwich structure as the core layer of resonator is used to present the flexible remodeling characteristics, the surface roughness remains below 1 nm when the diameter changes by more than 25%. Importantly, theoretical and experimental results show that under the tuning action of external pressure, the equivalent thermal expansion coefficient of the resonator gradually approaches the glass sheet on both sides with the variation of 2 × 10-4 /°C∼0.9 × 10-4 /°C, and the corresponding temperature response range of 0.12 nm/°C∼-0.056 nm/°C shows the promise of temperature insensitivity resonators on a chip.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article