Your browser doesn't support javascript.
loading
Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation.
Farpón, Marcos G; Henao, Wilson; Plessow, Philipp N; Andrés, Eva; Arenal, Raúl; Marini, Carlo; Agostini, Giovanni; Studt, Felix; Prieto, Gonzalo.
Afiliação
  • Farpón MG; ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain.
  • Henao W; ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain.
  • Plessow PN; Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
  • Andrés E; ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain.
  • Arenal R; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
  • Marini C; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
  • Agostini G; ARAID Foundation, 50018, Zaragoza, Spain.
  • Studt F; ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain.
  • Prieto G; ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain.
Angew Chem Int Ed Engl ; 62(1): e202214048, 2023 Jan 02.
Article em En | MEDLINE | ID: mdl-36315420
ABSTRACT
A frontier challenge in single-atom (SA) catalysis is the design of fully inorganic sites capable of emulating the high reaction selectivity traditionally exclusive of organometallic counterparts in homogeneous catalysis. Modulating the direct coordination environment in SA sites, via the exploitation of the oxide support's surface chemistry, stands as a powerful albeit underexplored strategy. We report that isolated Rh atoms stabilized on oxygen-defective SnO2 uniquely unite excellent TOF with essentially full selectivity in the gas-phase hydroformylation of ethylene, inhibiting the thermodynamically favored olefin hydrogenation. Density Functional Theory calculations and surface characterization suggest that substantial depletion of the catalyst surface in lattice oxygen, energetically facile on SnO2 , is key to unlock a high coordination pliability at the mononuclear Rh centers, leading to an exceptional performance which is on par with that of molecular catalysts in liquid media.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article