Your browser doesn't support javascript.
loading
Novel fabrication tools for dynamic compression targets with engineered voids using photolithography methods.
Pandolfi, Silvia; Carver, Thomas; Hodge, Daniel; Leong, Andrew F T; Kurzer-Ogul, Kelin; Hart, Philip; Galtier, Eric; Khaghani, Dimitri; Cunningham, Eric; Nagler, Bob; Lee, Hae Ja; Bolme, Cindy; Ramos, Kyle; Li, Kenan; Liu, Yanwei; Sakdinawat, Anne; Marchesini, Stefano; Kozlowski, Pawel M; Curry, Chandra B; Decker, Franz-Joseph; Vetter, Sharon; Shang, Jessica; Aluie, Hussein; Dayton, Matthew; Montgomery, David S; Sandberg, Richard L; Gleason, Arianna E.
Afiliação
  • Pandolfi S; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Carver T; Stanford Nano Shared Facilities, Stanford University, Palo Alto, California 94305, USA.
  • Hodge D; Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA.
  • Leong AFT; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Kurzer-Ogul K; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA.
  • Hart P; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Galtier E; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Khaghani D; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Cunningham E; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Nagler B; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Lee HJ; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Bolme C; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Ramos K; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Li K; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Liu Y; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Sakdinawat A; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Marchesini S; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Kozlowski PM; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Curry CB; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Decker FJ; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Vetter S; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
  • Shang J; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA.
  • Aluie H; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA.
  • Dayton M; Advanced hCMOS Systems, 6300 Riverside Plaza Ln. Suite 100, Albuquerque, New Mexico 87107, USA.
  • Montgomery DS; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Sandberg RL; Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA.
  • Gleason AE; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA.
Rev Sci Instrum ; 93(10): 103502, 2022 Oct 01.
Article em En | MEDLINE | ID: mdl-36319339
ABSTRACT
Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets' geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article