Your browser doesn't support javascript.
loading
A neural circuit from the dorsal CA3 to the dorsomedial hypothalamus mediates balance between risk exploration and defense.
Zhong, Cheng; Wang, Lulu; Cao, Yi; Sun, Chongyang; Huang, Jianyu; Wang, Xufang; Pan, Suwan; He, Shuyu; Huang, Kang; Lu, Zhonghua; Xu, Fuqiang; Lu, Yi; Wang, Liping.
Afiliação
  • Zhong C; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Wang L; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Cao Y; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Sun C; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Huang J; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Wang X; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Pan S; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • He S; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Huang K; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Lu Z; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Xu F; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Lu Y; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
  • Wang L; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Ch
Cell Rep ; 41(5): 111570, 2022 11 01.
Article em En | MEDLINE | ID: mdl-36323263
An appropriate balance between explorative and defensive behavior is essential for the survival and reproduction of prey animals in risky environments. However, the neural circuit and mechanism that allow for such a balance remains poorly understood. Here, we use a semi-naturalistic predator threat test (PTT) to observe and quantify the defense-exploration balance, especially risk exploration behavior in mice. During the PTT, the activity of the putative dorsal CA3 glutamatergic neurons (dCA3Glu) is suppressed by predatory threat and risk exploration, whereas the neurons are activated during contextual exploration. Moreover, optogenetic excitation of these neurons induces a significant increase in risk exploration. A circuit, comprising the dorsal CA3, dorsal lateral septal, and dorsomedial hypothalamic (dCA3Glu-dLSGABA-DMH) areas, may be involved. Moreover, activation of the dCA3Glu-dLSGABA-DMH circuit promotes the switch from defense to risk exploration and suppresses threat-induced increase in arousal.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Exploratório / Hipotálamo Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Exploratório / Hipotálamo Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article