Your browser doesn't support javascript.
loading
Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning.
Chicco, Davide; Alameer, Abbas; Rahmati, Sara; Jurman, Giuseppe.
Afiliação
  • Chicco D; Institute of Health Policy Management and Evaluation, University of Toronto, 155 College Street, M5T 3M7, Toronto, Ontario, Canada. davidechicco@davidechicco.it.
  • Alameer A; Department of Biological Sciences, Kuwait University, 13 KH Firdous Street, 13060, Kuwait City, Kuwait.
  • Rahmati S; Krembil Research Institute, 135 Nassau Street, M5T 1M8, Toronto, Ontario, Canada.
  • Jurman G; Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo (Trento), Italy.
BioData Min ; 15(1): 28, 2022 Nov 03.
Article em En | MEDLINE | ID: mdl-36329531
ABSTRACT
Cancer is one of the leading causes of death worldwide and can be caused by environmental aspects (for example, exposure to asbestos), by human behavior (such as smoking), or by genetic factors. To understand which genes might be involved in patients' survival, researchers have invented prognostic genetic signatures lists of genes that can be used in scientific analyses to predict if a patient will survive or not. In this study, we joined together five different prognostic signatures, each of them related to a specific cancer type, to generate a unique pan-cancer prognostic signature, that contains 207 unique probesets related to 187 unique gene symbols, with one particular probeset present in two cancer type-specific signatures (203072_at related to the MYO1E gene). We applied our proposed pan-cancer signature with the Random Forests machine learning method to 57 microarray gene expression datasets of 12 different cancer types, and analyzed the results. We also compared the performance of our pan-cancer signature with the performances of two alternative prognostic signatures, and with the performances of each cancer type-specific signature on their corresponding cancer type-specific datasets. Our results confirmed the effectiveness of our prognostic pan-cancer signature. Moreover, we performed a pathway enrichment analysis, which indicated an association between the signature genes and a protein-protein interaction analysis, that highlighted PIK3R2 and FN1 as key genes having a fundamental relevance in our signature, suggesting an important role in pan-cancer prognosis for both of them.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article