Your browser doesn't support javascript.
loading
Recognition of centimeter-level length changes using the intensity of probe light in BOTDA.
Opt Express ; 30(23): 41898-41910, 2022 Nov 07.
Article em En | MEDLINE | ID: mdl-36366654
We proposed a method based on the Brillouin optical time domain analysis (BOTDA) system to demodulate the length changes of the heating region using the intensity of probe light, under the premise that the temperature in the heating region does not change and the Brillouin frequency shift (BFS) of the heating region is known. This method can realize the recognition of small length under the condition of wide pulse width. The theoretical analysis shows that the different lengths of the heating region will lead to different gains when the spatial resolution corresponding to the pulse width of the pulsed light is larger than the length of the heating region. And through theoretical derivation and simulation, it is concluded that the relationship between the intensity of probe light and the length of the heating region satisfies the exponential growth. Further experiments verify that the exponential growth is approximately linear in the range of small length changes. The length of the heating region can be inversely deduced by using the linear relationship by detecting the intensity of probe light. When the length of sensing fiber is 100 m and the heating region changes from 2 cm to 8 cm, 1 cm heating region changes can be identified.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article