Your browser doesn't support javascript.
loading
Influence of Impurities from Manufacturing Process on the Toxicity Profile of Boron Nitride Nanotubes.
Kodali, Vamsi; Kim, Keun Su; Roberts, Jenny R; Bowers, Lauren; Wolfarth, Michael G; Hubczak, John; Xin, Xing; Eye, Tracy; Friend, Sherri; Stefaniak, Aleksandr B; Leonard, Stephen S; Jakubinek, Michael; Erdely, Aaron.
Afiliação
  • Kodali V; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Kim KS; Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
  • Roberts JR; Division of Emerging Technologies, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
  • Bowers L; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Wolfarth MG; Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Hubczak J; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Xin X; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Eye T; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Friend S; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Stefaniak AB; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Leonard SS; Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Jakubinek M; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
  • Erdely A; Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
Small ; 18(52): e2203259, 2022 12.
Article em En | MEDLINE | ID: mdl-36373669
ABSTRACT
The toxicity of boron nitride nanotubes (BNNTs) has been the subject of conflicting reports, likely due to differences in the residuals and impurities that can make up to 30-60% of the material produced based on the manufacturing processes and purification employed. Four BNNTs manufactured by induction thermal plasma process with a gradient of BNNT purity levels achieved through sequential gas purification, water and solvent washing, allowed assessing the influence of these residuals/impurities on the toxicity profile of BNNTs. Extensive characterization including infrared and X-ray spectroscopy, thermogravimetric analysis, size, charge, surface area, and density captured the alteration in physicochemical properties as the material went through sequential purification. The material from each step is screened using acellular and in vitro assays for evaluating general toxicity, mechanisms of toxicity, and macrophage function. As the material increased in purity, there are more high-aspect-ratio particulates and a corresponding distinct increase in cytotoxicity, nuclear factor-κB transcription, and inflammasome activation. There is no alteration in macrophage function after BNNT exposure with all purity grades. The cytotoxicity and mechanism of screening clustered with the purity grade of BNNTs, illustrating that greater purity of BNNT corresponds to greater toxicity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Boro / Nanotubos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Boro / Nanotubos Idioma: En Ano de publicação: 2022 Tipo de documento: Article